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Note

This document has been assembled from the major parts of three documents in which the
Precise Signal Component method was originally derived. The original document was assigned
the number CFS-175 and other parts, including the two assembled here, were assigned CFS-175
with some supplementary qualifier. A later, considerably abridged version was prepared for use
in the patent application and was assigned the number CFS-185.

The first part of this document gives the basic considerations for Precise Signal Component and
derives the basic form for a single frequency component. The second part, Platform Least
Squares, derives a surrogate function to reduce or eliminate confounding between widely spaced
frequencies. The third part, Multiple Adjacent Frequencies, derives the means of handling
multiple components having frequencies that are closely spaced.

This material is identical with the method described in USP 6,751,564, but expands upon it
considerably.

This document is viewable only. | believe this will be adequate for people who do not intend to
study it. Please contact me through our web site if you need a printable version. | am aware that
the no-print can be defeated, but again | ask that you contact me instead. | really need to know if
and how people are finding these documents useful, and this seems one of the few ways | have
to encourage feedback.



CFS-175 2

The Fourier Transform and the DFT/FFT

The preeminent tool of frequency spectrum analysis is the Fourier transform, typically
implemented in the form of the Fast Fourier Transform (FFT) or another variety of
Digital Fourier Transform (DFT). The Fourier transform of a signal g(¢) is defined as:

3(o(t), f) = / " g(t)e 1)

o0

For those used to thinking of frequency spectrums in terms of sines and cosines, it is
helpful to recall that €' = cos(x) + ¢ sin(z). Thus the transform can also be expressed
in the form:

o o
S(g(t), f) = / g(t)cos(2mift)dt — 2/ g(t)sin(2mift)dt
—0o0 —00

However, it is often easier to work with the complex exponential form. The infinite
Fourier transform cannot be used directly in data analysis. We are forced to examine —
sample — signals over a finite time interval. Moreover, the time interval usually must be
quite short, as few signals in the real world remain of constant character for long periods
of time. Thus the finite Fourier transform is evaluated only over a finite sample time 7.

_ i2mnt

3(g(t),m) = & / gty e @)

Note that the frequency f has been replaced by n/7. In practice, n is taken as an integer
i2mnt

and each e™ + is periodic (see the sine and cosine form) over the sample interval, 7.

Over 7, M evenly spaced samples of g(t) are taken, att = 0, 7/M, 27/M, ...,

(M —1)7/M . The integral is evaluated for frequency numbers n = 0, ..., M — 1. Note

in passing that the standard summation form has the interesting feature that the values
i2mnt

start at zero but stop short of 7. Because the functions e™ + are orthogonal, this

approach is robust, and the integral is almost always approximated directly as the
M-1 i2mnk

corresponding sum, ;> g(k7/ m)e~ i, evaluated for each frequency number,
k=0

n =0,..., M — 1. Orthoganality — linear independence — guarantees that in evaluating
this amplitude-measuring integral at one frequency number there will be no interference
from any of the other frequency components being measured.
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Current Approaches to the Base Problem

Fourier analysis is a powerful and easily applied tool. There have been many approaches
to modifying the DFT approach in order to ameliorate the problems described above.
These have principally been of three varieties. First, windowing, where the data function
g(t) is pre-multiplied by another function carefully chosen to reduce the influence of long
sample times and changing properties of ¢(¢) within the interval. While used for this
purpose, windowing has also seen extensive use in minimizing the sin(x)/x "leakage" or
"noise" associated with the Fourier transform, as described later.

The second major category of modifications to the DFT for sounds analysis has been
partitioning, where the spectrum is divided into several ranges and each range treated
differently using separate DFTs. This method allows coarser DFTs with shorter sample
intervals in the high frequency ranges.

The third major category of modifications is the "traveling DFT," where the DFT is
successively applied to the data, discarding a few points at the beginning of the sample
interval and adding a corresponding number of new points to advance the sample interval
along the timeline. The result is then analyzed using knowledge gained from experience
with exactly how the DFT will change when passing through various areas of changing
signals.

While these modifications are useful and may indeed be used in some form to augment
the method described in this document, they do not in themselves provide solid solutions
to the base problem of the DFT, which is that the resolution of the frequency and
amplitude of component signals to a degree consistent with human hearing requires
sample times that invalidate the constant signal assumption basic to the DFT.
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The Root Assumption

In the following, we develop a means of using the tools of standard Fourier analysis
whereby we are not trapped by the limitations. To do this requires that one simple
assumption be made:

At any instant, the signal which we wish to analyze is comprised of a small number of
specific frequency components.

By "small number" we mean less than infinite and in general, less than the number of
standard Fourier coefficients that will be computed as part of the method. By "specific
frequency components," we mean that the frequencies of the actual signals will not
normally correspond exactly to the numbered frequencies of any Fourier analysis or DFT
that is being used. By "at any instant" we mean that the frequency and amplitude of the
specific frequency components may change with time. Such changes will usually be
slow with respect to the specific frequencies themselves, but may also involve sudden
transients.

Development of the Method

Returning to Equation (2) from above:

17 _i2mnt
Slg)m) = — [ g(t)e™ 7 dt (2]
0
Suppose ¢(t) is a sinusoid of frequency that does not match the integer spacings 2nr /7,
i2m(n+6)
but is rather 2(n + 6)7/7. Then g(t) = Ae™ 7 t, where A is a complex constant and
A T i2n(n+0)t  i2rnt
3(g(t),n) = —/ e et
TJo
A [T iem
_ 2 / e T dt ®)
TJo
Which evaluates to:
iA(1 — ei2m
Slgtt).m) = AL ©)
7r
The magnitude of this evaluates to:
— Al sin(md
Vst w5, = [l (10

sin(x)
x

Where the overbar indicates complex conjugate. This is the "sideband" so
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commonly associated with the use of the FFT. Notice that the value is independent of n
and relates only to ¢, the displacement from the frequency of interest, n. Common
practice is to regard these sidebands as an unwanted form of "leakage" or "noise"
associated with the method and to attack the problem of the sidebands by carefully
choosing a "windowing" function, which when multiplied into g(¢) prior to the transform
will cause the sidebands to be as small as possible. In actuality as we shall see below, the
information in these sidebands is a key element of full frequency analysis. Windowing
typically obscures or destroys this necessary information. Equation (10) shows that a
reason for "sideband leakage" is that the signal being measured does not coincide
precisely with any of the DFT reference frequencies.

Let us examine Equation (9) more carefully. Note that 6 can be any value. It is useful at
this point to define 6 = k + €, where k is a principle integer value of ¢ and € is the
difference remaining, typically but not necessarily a fraction.

Thus we have:

iA(l _ ei27r(k+f)) iA(l _ ei27rk:€z'27re)

t - =
S(g(t).m) 27(k + €) 27(k + €)
but k is an integer value and therefore ”>™ = 1, so
ZA(l _ 6i27r€)
t = - 11
Bl = Gy (1)

In practice we will be analyzing a set of values of §(n) for a sequential range of n.
{Note: 7/2004: The following is more tricky than it looks. We are defining a function
which exists only for integer £ but succeed in using it as a continuous function. This is
nearly as fortuitous for this application as the FFT is for standard Fourier series
analysis.} For each of the successive increasing values of n, 6 will be one less, since the
(fixed) frequency of our g(t) is represented n + 6. Since 6 = k + ¢, k will also increase
by one for each successive n and e will remain constant. Thus, from a sequence of data
y, where we use the shortened notation y = §(g(t), n), we will be trying to determine €
from the values of y at different values of k. The actual function we will be trying to fit
to the data will be

2(1 _ ei?w&)

27(k +€) (12)

y=A
(1 _pi2mey | .
For this analysis, we can recognize that A’ = A il 2; Lisa single complex constant for

the purposes of the fit and € is a single real constant. The value of A can be found once
A’ and € have been determined. This leaves us with
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A/
(k+¢€)

y= (13)

Equation (13) makes the remarkable statement that the Sm( ) "sideband leakage" due to

actual signal frequencies not matching DFT reference frequenc1es produces coefficients
which correlate in a very simple way — a linearly biased inverse — with the degree to
which the actual frequency mismatches the nearest DFT frequencies.

It is very desirable to put fitting equations into linear form (linear with respect to the
fitting constants) if possible, as it greatly simplifies the computations required to fit the
equations.

k= —e4 — (14)
Y

Equation (14) is one such form. Equation (14) is unusual for two reasons. First, a least
squares fit to this form will be a fit to k£, normally thought of as the independent variable
in terms of y, normally thought of as the dependent variable. Second, £ and € are
definitely real, while A’ and y are complex. Special consideration will be given both
these unusual features.

For the least squares fit to Equation (14), normally the sum
Z(’fy’ - ’%) (’fj - ’%)
J

would be minimized, where k; is the value calculated from the fit that corresponds to k;.
Here the overbar indicates complex conjugate, and we must sum the magnitude

N\ 2 ~
differences squared instead of (k:j — k:j) because k; must be regarded as complex,
containing the term ‘;‘—_,. Because k; is real, the lgj resulting from the fit should be very

J —_—
nearly real. However, ordinarily we would be minimizing Y (y; — ¥;)(y; — ¥;), the sum

J

of the magnitude differences squared for the independent variable in Equation (13). We
can approximate this by including a weighting factor w; in the original sum, such that:

wy (ks = k) (ks = k) ~ (5 = ) (s — )

To do this in this case it is useful to think of this in terms of small differences, whereby
we can approximate:

2 2
w;|Ak;|” ~ | Ayl
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wj ~

‘ij ‘

Ak - |A’

with Z—z resulting from differentiating Equation (13) [or Equation (14)]. Since |A’)* is a
constant, it will have no effect on the minimization, so the primary weighting factor is:

4
wj = |y;|
Note that this weighting factor merely restores the fit so that it more closely matches a

least squares fit to Equation (13). Other weighting factors may be found to have more
desirable characteristics in practice.

So, we wish to minimize:

;wj (’f.j - ’%) (’f.j - ’%)
ij(k: —i—e—é) (k +e— j—;)

A Al
ij(kj—FE——) kj+6—:
; Yj Jj

with respect to the values of the constants real ¢ and complex A’. Here it is useful to
write A’ = A, +iA]

/ / / /
ij(k: +€—A—¢— A—)(/{: +6—i+ A—)
J

Y Yj Yj Yj

To find the minimum, we set the derivatives of the sum equal to zero, for each of €, A’,,
and A.
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}:%(%:+m:14(1 1)—Aﬁ(1~—é)):0
Yi Yj Yi Yj

Ejuqu +2-—A/<yf+%) A’( %))::0
YiYy; YiY;

. I .
ij (kj +e— A%{Re(yz]) — A m(gg)) =0
J

Y] |yl

where |yj|2 denotes the squared magnitude of y;.

d < Al A)( Al A)
N w(kjte— SR i) (k4 e— ZE 4L ) =0
m&%zf yi  yi)\’ 7T
ki 1 Ay k1 A
_ij(:f+e:_ LML E) 0
v Yj Yio YiYi Y Y Y5Y;

1 1 1 1 A’
ij(kj(:+—>+€<:+—)_2 i)zo
- Yi Yj Yi Y YiY;j

. a7 A/
ij<kj<yf+%)+e(yf_+yﬂ)_2 5) 0
- Y;Yy; YiY; YiY;j

J

S, (ije@,;) 4 Few) A’R2> _

7 Y] |y;] |y;]

0 ( Ay A’)( Al A/)
— Y wilkj+e— L i L) (ki+e— L +iL) =0
8A}Zj: ! Yj y Yj Yj

J J
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I ; !
S LRI AR

Tyl |y;] |y;]

The three equations are:

ij (kj +e— Ap Re(y;) — A} m(y;)) =0
J

il |yl

R R ; A’
Zwﬂ € ?JJ Te e(yQJ) _ R2 -0

Tyl |y;] |y

1 ; 1 j A
ij(_kj my) _ Imy,) | ) 0

r |yjl |y;l |yl

Partitioning out the sums:

_eZwJ+A Z few) +AZ JRLLIED) = S wk

JyI* lyl” ;

B Re(y;) k'Re(yj)
Z lyil” Z Z R
I
- Z o T|nj| Z J 7' Z ] ] | 7|

In matrix form:
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10

Re Im(y;
- ij Z w UZJ ij \yj('\?) ijkj
j I !
U N L
_ ij Re(_‘”;) ijﬁ 0 c = | Swikt ! (15)
\1/] j [l 1;? J v
w \J\ = |y, 7 m
; . j

And from this the three coefficients ¢, A%, and A’ can be found, giving ¢ and A’. We
can also calculate A that appears in Equation (13) as A = — 2wiA’/(1 — ™). This
gives both the precise frequency of the tone and its precise amplitude.

If we use the principle weighting factor w; = |yj\ we obtain:

— 3 ly,l* Slyil*Re(y;)  Slysl*Im(y;) >yl 'k
j J J J
€
— Sly;*Re(y;) >ly,l* 0 e = | Syl Re(y))k;
J J ' J
I
— S lyil* Im(y;) 0 > ly;l? >y [ Im(y;)k;
J J J
(16)
Both of these matrices are of the form:
—a b d € Y1
-b ¢ 0 A | =1 Y2
—d 0 ¢ Af Y3

Using Maple V Version 5, it is easy to obtain the algebraic inverse of the 3x3 matrix so
that:

€ 1 —C b d Y1
/ _ —b ac—d? bd Y9
r ac — b2 — d? y €

b —d bd ac=b? Y3

D=ac—b>—-d*

(—cY1+bY2+dY3)
D

€E =
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Ay =

(= ov1+ ety tys)

D

Ay =

( —dY1+ Wyg et Yg)

D
From Equation (15),

o= So s (T - (Zu

il

"
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And for w; = |yj|4, from Equation (16)

2 2
D= "yl lyl* - (Zlyjl2Re(yj)> - <Z|y1|2fm(yj)>
j j ; ;
a=> |yl
j
b=y’ Re(y;)
j
c=> lyl’
j
d =Y |y;[*Im(y;)
j
Y1=> |yl'k
j
Y2 = |y;[*k;Re(y;)
j

Y3="> |yl*kiIm(y;)
j

12
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Platform Least Squares
The second major development in the method

Using the form derived above:

V=Gt [13)(1)

will produce reasonably accurate frequencies and amplitudes of generated mixed
frequency signals using the method described in that report. For example, the following
results were obtained for a randomly generated mixed frequency signal starting with a
Fast Fourier Transform on 2048 (real) points.

Fin F out Amplitude in Amplitude out
39.206 39.211 -58.813  -161.327 -55.886 -161.809
90.839 90.839  -368.906 65.213 -368.372 65.922

288.269  288.270 315.810 -295.113 316.009 -294.643
362.163  362.188 464.176  139.473 450.890  175.240
379.699  379.691 273.214  -407.479 263.194 -412.661
446.528  446.518  -128.046 9.567 -127.715 13.357
745.146  745.144  -272.562  431.675 -270.279  435.579
785307 785321  -374.069  425.528 -393.216  410.000
797325  797.343 199.015 -216.649 229.429  -220.817
806.834  806.828  -393.595 -176.954 -397.911  -171.716
908.112  908.111  -187.935 -471.246 -188.234  -473.576
1014.719 1014.719 497.430 -27.095 496.677 -33.983
Table I

Sample Results of Original Least Squares Fit

{Note: 7/2004: Understand that the comments here were made in the course of
developing the method and do not refer to it's current state of development.} Using the
above method, the behavior shown here is typical for the majority of components in
generated test frequency signals. However, the results for some components can show
much greater errors, particularly in amplitude. A number of different phenomena
contribute to such errors, and these are currently being studied. The method has not yet
been tested using real-world data; there currently is no means of determining the precise
frequencies and amplitudes in such data and thus no way of checking whether the method
is actually working properly.

It should be noted that the first point in achieving accurate results regards the use of .
The temptation is to simply use the index of the array element in the FFT array as k.
While mathematically sound, this approach is disastrous in practice for numerical
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reasons. When £k is a large number, the solution of the least squares equations leads to
the subtraction of nearly equal large numbers to obtain a difference that is a tiny fraction
of the original operands. Thus it is important to reduce the size of £ by subtracting a
bias from it. It is convenient to use a bias so that the range of k either starts at 1 or
straddles 0 if k is not used as a divisor in the calculation. This bias is added back into the
frequency at the conclusion of the least squares analysis.

It is also clear that much can be gained by tuning the parameters of the least squares fit.
This includes the number of points included in the fit, the determination of the
approximate position of frequencies to be analyzed within the FFT array, the positioning
of the range of points about that approximate frequency, and the weighting of the
individual points within the least squares fit. The above results are essentially a first cut
at this, but no real tuning has been performed at this point.

As shown above, Equation [13](1) is reasonably accurate but does suffer from the cross
interference between frequency components. What happens in practice is that the full
signal also contains the tails of all the other frequencies and these tend to form a platform
under the single frequency signal. Thus a first approximation of what we have is

A/
k+e€)

Y= +C 2)
where C' is a complex constant representing the sum of all the tails of frequencies to
either side. Of course C' is not really constant and each signal that contributes to it will
taper off from one side to the other, the direction of the taper depending on whether the
interfering signal is above or below the frequency of the target signal. Since signals
above the one of interest will generally taper opposite to those below, the sum will
gradually twist going along the frequency interval being analyzed. Thus a better
approximation would be

/

= C + Sk+ Tk 3
Y= Gro PO ©)
Multiplying out, we get
yk +ey=A + Ck + Sk? + Tk*+Ce + Sek + Tek? 4)
dividing by k
1 1
yzA’E+C+Sk:—|—Tk:2+C’eE+Se+Tek:—e% (5)
The variables are y and k, so collecting terms according to constants
1
y:(C+Se)+(A/+Ce)E+(S+Te)k+Tk2—e% 6)

This is in the linear form
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1
y:ao+a1E+a2k+a3k2+a4% (7)

where ag...a3 are complex and a4, which corresponds to — ¢, is real only. When the
constants ag...a4 are obtained, then

€= —ay (8)
T =as )]

S =ay—Te (10)
C =ay— Se (11)
A'=a; - Ce (12)

as before the original
A= —2miA'/(1-e"™)
can be obtained from the result.

To perform a least squares fit on this form, we need to find the minimum of
> wiy; — ¥y — ¥j)=
j

1 2 yj)( 1 Yj
wily; —ag —a1— — ask; — azk; —as=> | | y; — ao — a1— — ask; — ask? —ay=> |=
Zj: ]( J kj J J k; J k; J J k;

1 vi\/_ _ _1 __ o 7
ij <y'7' — ap — alk—j — agkj — agk? — a4k—j) <y'7' — ap — alz — agkj — agk‘? — a4k—j)

ey

Here ay, ..., a3, and y; are the complex quantities, the remainder all being real variables
and constants. Because a, must be maintained as a real, to correspond with e, it is
expedient to expand all the coefficients.

E :w» Yj — Qor — L gy — alR_l, - iall_? — asrkj —iasrk; — aasz - iaglkz - a4—yj
-3\ I k; k; J J J J k;j
J

— . 1 . 1 : 2 : 2 Yi
X (yj — Qor +tagr — Cble—j + zauk—J — ang]’ + ZG/Qij — angj + Zagjkj — a4k—j)
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We must successively take the derivative of this sum with respect to

agr, Gor1, AR, @17, AR, G271, A3R, 637, and a4, set each expression to zero, and solve to find
the minimum.

0
m : ’u)](>() =0=
J
Zj:wj( —y; +aor +tagr + alelj + iauklj + angj —i—iagjkj + GngJz + Z'Clgjka + CM%)

— . 1 . 1 . 2 . 92 Y
+ wj( —Yj+aor —iaor + a1y — iairy + agrkj —iagrk; + azpki —iazrki + ‘141?;)

_ 1 Y
E w]-( —Yi— Y + 2a9r + 2alRE —+ 2(12}3]{5.]' + 2a3Rk;]2. + a4<y] kjlyj)) =0
7 j j

1 Ri
ij( — YRrj + QoRr + alRE + asz:j + aggk‘? + CM%) =0
j J J

where the notation yp; = Real(y;) and yr; = Imaginary(y;).

. . . 1 1 . . . :
ij(z yj = iaor + aor — iRy + Ay — iagrk; + asrk; — zang’JZ + Clg]ka — ZCL4Z—;)
; : :

P . . 1 1 . . . Yi
+w]~( —iJj+iaor + aor +iairy + aug +iapk; + axk; +iaspk? + agk} + ZCL4Z—‘;)

. . 1 . = Y
ij (Z (yj — ;) + 2a0r + 2a11? + 2a97k; + 2031/?? —tay %J) =0
7 j j

1 1)
ij( —yny o+ a0 G aarky o+ agky + a4%) =0
; ! ]

1o 1 Lo : - v
+ (— F, T Q0RE; — La0rg; T G1RGy — 1G1gs + G2R — U0y + asrk; —Za31kj+a4k—jg)
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Zw;; Y%t 5 +2a0p 1~ + 201R 15 + 2a2r + 2a3rk; + as LQ% =0
k; k; k‘ kj

1 1
Zw3< Yrj +aORk —1—ale2 + asr + azrk; + aq k’2> =0
J

+ (=i +tiaopt +aort Hiagy +aud +iag + ag +iaspk; + asrk;+iar
kj kj kj kj kj J J kj

1 1 =Y
E w; 1 Yi— Y Yi + 2apr— —}—2&11 2 +2a21+2a31kj—ia4 Yi 23/] =0

J

1 1
Zw]< (25] + amk + a11k2 —{—aﬂ—l—ag[k‘ +a4iz> =0
kj

Sy ) () = 0 =

J
ij( — yjk?j -+ CLORI{JJ' -+ iaojkj +aip +ia17 + a/QRkJQ' -+ iagjk}jZ -+ ang}? +2 agjk‘? -+ a4yj)
; .

+ ( - y_jkj + CLORk‘j — iaojkj +aig —tair+ Clsz‘Jz — iagjka + ang:? — iagjk? + a4y_j)

ij (y; + 9j)k; + 2a0rk; + 2a1r + 2a23k + 2ang +as(y; +75) =0

ij( — ijkj + G()Rkj + a1R + ang]z + angj-’ + Cl4ij) =0

oSy )(o) = 0 =
J
Zj:wj(i yjkj — iaoRkj + aojkj —taig +air — Z'CLQRkJQ- + azjk? — iang? + agjk? — ia4yj)

+ (= iGk; + i aork; + aork; + i air + arr + i asrk’ + asrk} + i aspk? + asrk? + i aqy;)
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Zw] —Uj)k; + 2a07k; +2a1[+2a2]k‘ +2a31k —iay(y; — y_])) =0

ij( — yrjkj + aork; + air + aQIkJQ- + a31k§‘) + aqyr;) =0
J

0
% : wj()() =0=
J
ij( — yjkf + aoRk:JZ +1 a()[ka + ale‘j +1 CLH/{]' + GQR]{;-’ + ’L'azjk? + CL;),R]f;-L +1 agjk;-l + a4yjkj)
J

+ ( - y_jkf + (ZORk]Z — ’iaojk]? + alej — iaukj + CLQRk? — iagjkjg + ang? — Z'agjk;l + a4y_jkj)

Zw] yj + y])k + 2CLORk + 2(113/{ + 2a2Rk + 2&33k + a4(yj + yj)k ) =0

> wi( = yrik? + aorki + aiph; + ask? + aspk] + awyngk;) = 0

aaMZwJ( () =0=

Zw] (Z yjk] 7 aoRk] + (Io]ka - iale:j + alfkj - iCLQRk? + CLQ[]C? - ia33k§ + a31k? - ia4yjkj)
J

+ ( — ’Ly_jk? + ’L'CL()Rsz + a()[k:]z +1 ale:j + auk‘j + iang;’ + azjk‘? +1 ang‘;L + agjk‘;-L +1 a4y_jkj)
ij ) k + 2a01k: + 2a17k; + 2a2[l<: + 2a3[k:4 —tas(y; — U;)k; ) =0

> _wi( = yrj kS + aork] + avrk; + aork] + asik + asyrk;) =0

(o) ) — 0= % _Y%
Z%‘( y]y] + agp Rk -I-ZCLOI +Q1Bk2 -I-Zaukz + agrYj + 1 aoryj + asryik; + i asryjk; +a4y]y])
j

+ ( — y]]f—l//j + GQR% - ia()[k—‘; + ale—é — 7;0/1[}72 + aspy; — ZGQij + agRyjk‘ — Zagjyjk‘ + aq g]%)
! ! J J
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YiY; Uty . Uiy Yityi . Yi—Y T
D wi( =255 +an=— +iag T +ain S Fiay T + an(+ yj)
; j 7 J 7 J

yjy_J)

j

+iao(¥; — yj) + asr(¥5 + yj)k; + i asr(y; — yj)k; + 2a4 0

ij(— Yi9; “+ agpr YRj + a ]& +a13y J +a1]

4 A2RYR; T Q21Y1; +
> k; k; k; k? ! !

k,‘2

YilYi

k:2 ) =0

asrYrjkj + azryrikj + as ===

So that the collected nine equations in nine unknowns are:

1
ij< yR7+aOR+a1Rk + azrk; +G3Rk2+a4y;]> =0
: j

1
ij( Yrj + aor + auk— + agrk; + asrk; +a4?£ﬂ) —0
' j

YRj 1 1 Rj ) _
zj:wj<—k—]+a03kj+a13k2+a2R+angj+a4k2 =0

Zw]<— ——|— am; + a11k12 —I—aﬂ—l—aggk +a4z]/;2j> =0
ij( — yr;k; + aork; + a1g + ang’]Q- + ang:;’ + asyr;) =0

ij( — yrjk; + aork; + arr + asz]z + GSIk? + asyr;) =0
ij( — ijk:JQ- + aORkJQ- + aipk; + aggk? + ang;l + asyr;k;) =0

ij( —y1; K + aork? + a1k + aork? + asik] + asyrik;) =0



> wj( -

J

YiYj

k;

—|'CLO

YRj JRj
k]

asryYrjkj + azryrik; + as ===

Yrj

+ a()]— + a1p==

kj

CFS-175

YRj
k,?

+ GH ka

YiY; )
k,?

In matrix form, where each element represents a sum over j:

wjk;
0

w]ka
0

UR]
W5,

w;k;
0
U)jk2

UI]
W5k,

wjk;
0

URJ
w] k2

w;k;

N7}

wjk;
0
wj
0
w]k]?
0

0

WjYRj

0

0

1.3
wjkj

WiyYr;

w]k?
0
0
w]k;’
0
w]k;l

0

w;yrik;

0

0

0

0
w]k:;l

w;yr;k;

4 A2RYR; T Q21Y1; +

=0

wjyrj k;

|‘/j|
wj kz

QoR
aor
1R
aiy
G2R
a2y
G3R
asy
Q4

20

(13)

This system is too complicated to satisfactorily solve symbolically but can be solved
easily using numeric matrix inversion or another linear system solution method on a
case-by-case basis. As before, the weighting factor is available to adjust the method for
better performance. This method has been given preliminary tests in which it appears to
perform quite well in determining precise frequencies and amplitudes for mixed signals.
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F in F out Amplitude in Amplitude out
22.585 22.585 346.230 -234.323 346.230 -234.322
71.479 71.479 -176.693 21.150 -176.692 21.152

206.245 206.245 314.081 294.419 314.081 294.419

774.578 774.578 -141.360 390.191 -141.360  390.191
1448.484  1447.909 -360.471 -342.341 2241.656  -920.017
1616.000 1616.000 385.323 -145.001 385.323  -145.001
1758.175  1758.175 -187.616 -441.476 -187.616 -441.476
2349990  2349.990 314.202 -399.130 314.202  -399.130
2758.343  2758.343 188.560 -348.127 188.560  -348.127
2905.176  2905.176 168.015 -348.763 168.015  -348.763
3109.001  3108.998 183.427 147.184 178.753 152.784
3119.557  3119.557 178.925 140.215 178.924  140.216
3296.036  3296.036 69.103 -116.692 69.103 -116.692

Table II

Sample Results of Platform Least Squares Fit

Table II shows that the results of this platform method are, in a word, amazing. At this
point, these are typical results in the same sense that the results shown in Table I are
typical for that method. It will be noticed in the above that one component, near

f = 1448, is glaringly in error. At this point, this happens. Here it is due to two random
frequencies being too close together. The second frequency is completely unreported.
Sources of such errors and methods for dealing with them are being pursued and it is
fully expected that satisfactory resolutions will be found.

The above methods deal with single frequencies, but in some cases it is possible to deal
with multiple frequencies still using linear least squares. For example, with the
frequencies known, a linear least squares to the corresponding amplitudes is quite
feasible:

A Al Al

= A L 2+ .. 14

V=t g T ire T e (19

where the ¢; are known is in simple linear least squares form. It is also possible to
determine a second frequency given known nearby frequencies.
A A Al
— Al L 2 15
Y= x0T T e (15)

where €; and €5 and perhaps more frequencies are known and included. Equation (15)
can be treated in the same manner as Equation (3) was treated above. In fact it would be
quite feasible to add further platform correction terms as was done in Equation (3) if this
proves desirable. Furthermore, it is also quite feasible to perform a nonlinear least
squares fit using one of the above methods to obtain most of the coefficients using linear
least squares and a nonlinear method to vary the "known" frequencies in order to
determine an overall minimum sum of squares.
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Multiple Adjacent Frequencies
Here the method is extended to the general case of multiple closely spaced
frequencies

The form of Equation 13 from the first part above,
AI
)

[13](1)

was extended to the form

/

y:(kATE)%—CJrSkthk:Q 312)

of Equation 3 in the second part (Platform Least Squares) above.

In Platform Least Squares, it was remarked that the situation of two (or more) nearby
frequencies could cause errors in an analysis that otherwise performed remarkably well.
In general, this problem becomes important if the there are two or more precise frequency
signals of significant amplitude within the range of frequencies represented by the span
of coefficients from the FFT or DFT that are used as data for the least squares fit. The
root assumption of this method is "at any instant, the signal which we wish to analyze is
comprised of a small number of specific frequency components," which we believe to be
the case for many everyday signals. Nonetheless, there is nothing to preclude several of
this small number from being adjacent to one another. For many practical purposes it
will be sufficient to report such groupings as a single frequency. The ear does not
separately detect the three frequencies of a note in the upper octaves of a piano, but will
detect the "beat" as a slow variation of amplitude of the single frequency, which this
method is also capable of tracking. Nonetheless, it is likely that there will be cases in
which it is more desirable to separate groupings of a few nearby frequencies.

The most obvious way of dealing with the situation of several nearby frequencies is to
choose the span of data so that it avoids multiple frequencies, even if this requires that
the sample be less symmetric about the target frequency. However, it is also possible to
fit multiple precise frequencies that occur within a span, as will be shown. These
frequencies can even fall in a single gap between two adjacent frequencies of the DFT,
although it is to be expected that as the signals become more similar, separating them will
become less accurate. Each new frequency that is added adds a complex amplitude
coefficient, A;, and a real frequency, €,, which means that to maintain the same excess
degrees of freedom in the least squares fit, 1% new points must be attached to the span,
widening it and potentially including more frequencies, which fact must be balanced
against the ability to detect an additional frequency. The 1% point requirement comes
about because each frequency adds three new parameters; two from the complex
amplitude and one from the real frequency, while each additional point from the DFT
span adds only two values, from the single complex Fourier coefficient.
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We address the case of nearby frequencies using the form

/

A
— P T 2
Y Ep (k+6p)+c+5k+ k (3)

for the case of a cluster of p nearby frequencies. First we will deal with the case of just
two nearby frequencies and then with three in order to develop a general formula.

A} N A
kE+e) (kE+e)

y:( +C + Sk + Tk? 4)

Multiplying out, we get
yk? + yk(e1+e)) + ereay = Ay + Ad'er + (A) + A )k + Ck* + Ch(e+e) + Cerea +

Sk3 + Sk2(61+62) + Skejey + Tk + Tk3(61+62) + Tk?ere, (5)
dividing by k?

1
y=[C+ S(e1te) + Terea] + (Ar'er + Ad'er + CElQ)ﬁ +

1
[Clerter) + Saer+ (A1 + A)))7 + [(erter) + Slk + Tk = (@)} — e 46)

This is in the linear form

1 1
+a2—+a3k+a4kz2+a5g+a6£ (7)

Y= a0t aigg + a2y k 2

where ay...a4 are complex and a5 and ag, which correspond to — (€;+€;) and — € ¢;, are
real only. When the constants a...a¢ are obtained, then it can be recognized that

(r — €1)(z — €2) = 2% — (e1+€2)x + €13 and thus €; and ¢, are the roots of the standard
quadratic 2% + asz — ag = 0.

— a5 — /a2 + 4ag

€ = 9 ()
- 244
6= — BT VA5 T A6 9)
2
T=ay (10)

S = a3 —T(e1te) (11)
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C =ag— S(ete) — Terey (12)
Clerter) + Serer + (A + Ay') = as
Ay = ay — Cle1te) — Seje — A
Al'ey + Ade + Cejey = ay
Aley = a1 — Ayeg — Ceyey
Al'es = ay — ase; + Ce1+er)er + Se%ez + A/eg — Cerea
Al'(ea —€1) = a1 — azer + C’e% + Sefez

B Ce? + Se?ey + ay — aze;

€ —€

Al

(13)

B Ces + Seier + a1 — azer

€1 — €2

Ay (14)

as before the original
A, = —2miA,/(1— e?mr)
can be obtained from the result.

Now we con continue on to the case of three nearby frequencies in order to see how the
system behaves as we add frequencies.

A A As

+ +
k‘-i-él) (k’+€2) (k?+€3)

v=1 +C + Sk + Tk? (15)

Multiplying out, we get
yk® + yk*(e1+ex + €3) + yk(e162 + e1e3tere3) + yereaes =

A/lk'Q + Allk(€2+€3) + A/1€2€3 + A/zl{?Q + Alzk(€1+€3) + A,2€1€3 +
Agk‘Q + Agkﬁ(éﬁ‘ﬁz) + A/3€162

Ck? + Ck(e1+ex + €3) + Ck(erex + €1e3tere3) + Cereres +
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Skt 4+ Sk (e1+er + €3) + Sk2(6162 + e163t€6263) + Skejeres +

TE® + Tk (e +er + €3) + Tk3(6162 + e1e3te63) + The 6263 (16)
dividing by k*
Yy = [C + S(Eﬁ'ez + 63) + T(€162 + 61634‘6263)] +

1
(Aleres + Aderes + Ajerer + 0616263)E +

1
+ [Al(extes) + As(ertes) + As(erter) + Cerex + e1e3teres) + 5616263]@

1
+ [(A] + A} + A) + Clerter + €3) + S(er1er + e163e2€3) + TE]GZQ]E
+ [S + T(e1+e; + €3)]k + Tk?
— (e1ter + 63)% — (162 + 6163"‘6263)% — 616263% (17)
This is in the linear form
1 1 1 9 Y Yy Y
y:ao%—alﬁ—kagﬁ%—agg—kmk—f—%k +G6E+a7ﬁ+agﬁ (18)

where ay...a5 are complex and ag...ag, which correspond to — (e;+¢€; + €3),
— (€162 + €163te263) and — €663, are real only. When the constants ay...ag are
obtained, then

€1€2€63 = — asg
€162 + €1€3T€263 = — ay

€1te; + €3 = —ag

These can be recognized as the standard form coefficients for a cubic equation with the
roots €1, €, and 3.

2?4 agr? —arx+ag = (x —€)(z — &) (z —€3) =0 (19)

This equation can be solved directly using the cubic solution (Cardan's solution)

z = — 36aga; — 108ag — 8(12 + 12\/ — 12a§ — 3(1%(1% + bdagarag + 81@% + 12a8a2
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2
_ar %
w— 3 : 9
3
25 a
= _ew— 28
AT T3
1 1
3 ag 13 [ 23
© T T <6+6w>
5 ag 1\ 3 23
= ——4+3w——+—| —+6
€3 1 + Jw 3 + 9 ( 6 + w)
For this to be valid all three ¢, must be real.
T=a;s (20)
S =ay —T(e1te; + €3) (21)
C = ayg — S(G]"‘Gz + 63) - T(€1€2 + 6163+€263) (22)

A/1€2€3 + A/2€1€3 + A/3€1€2 + 0616263 = a1
Al(extes) + Aj(ertes) + As(e1+er) + Cere2 + e13t6263) + Sejezes = ap
(A} + A + AY) + Cler+er + 63) + S(er62 + e163t6263) + Tereaes = as

[S(e2 + €3) + Tezes + Cled — ay + aze; — azed

A= (61 —€3)(e2 — €1)

, [S(e1 4 €3) + Teres + Cles — a1 + azes — azes
(€2 — €3)(€1 — €2)

A — [S(e1 + €2) + Teres + C’]eg —a; + ases — a36§ (25)
5 (e3 —€1)(e2 — €3)

As in the case with two frequencies, once A is obtained, A and A% can be obtained
through symmetry, and as before the original

Ay = —2mid) /(1 — e?™) (26)



CFS-175 27

can be obtained from the result.

Clearly, more frequencies can be added using a similar technique. The fitting equation
will remain linear with respect to constants and in the same form and each added
frequency will require the solution of a standard polynomial of one higher order for the
frequencies and a set of linear equations of one higher order for the complex amplitudes.
This solution need not be done algebraically; it can be done numerically if that is easier.

Looking at Equation [7] from Supplement 1 and Equations (7) and (18) from this report

1
y:ao+a%+a2k+a3k2+aﬂ [7]

k

— 1 1 k k2 y Y 7
y—ao+a1k2+a2k+a3 + ay +a5k+a6k2 (7)

1 1 1 Y Y Y
y—a0+a1k +a2k2+a3E+a4k+a5k2+a6E+a7ﬁ+a8ﬁ (18)

these can be expressed as an equation of common form:
2 1 Y

y = ag + ark + ask® + Z i3y + b (27)

p_

where p = 1, 2, 3 for the above cases and is extended for cases of more frequencies. The
coefficients a are complex and b are real.

This corresponds to

A/
= k+ Tk 2
y=C+ Sk + +Zk+€p) (28)
and in general the ¢, are the solutions of
2"+ Y (= 1P,z =0 (29)

which we have shown for the linear, quadratic, and cubic case to be:

€l = — bl (30)

— b — \/b%+4b2 (31)

2

€1 =
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28
— bl + /b +4b
€ = ki 9 s (32)
z = — 36b1by — 108b3 — 8b3 + 12\/ — 12b3 — 3b3b? + 54b1bybs + 81b3 + 12b3b?
_b b
w— ER
z3
25 b
1 1
z3 by i3 [ 23
- — - —| = 4
€9 12+3 3 9 <6+6w) (3)
P b i3 ([ 2
1
63__E+3 —§+ 9 <€+6UJ) (35)
and from combining other results:
T = a9 (36)
S = CLl —_ TZEP (37)
p=1

n n n
C=ag— SZep — TZ Z €r€s (38)
p=1 q=1 r=q+1
The coefficients for as...a, 2 along with the above results will formulate into a series of

n linear equations in the n unknowns, A;,. Corresponding to the linear, quadratic, and
cubic cases for € above, the solutions are:

All = das — 061 (12)
A,l _ CG% + 56%62 + a4 — azey (13)
€ — €

o= Cel + 56361 + a4 — az6;
[ =

€1 — €2

(14)



CFS-175 29

[S(e2 + €3) + Teaes + Cleb — as + agey — azed

(61 —€3)(e2 — €1)

_ [S(er+e3) + Teres + Cles — as + ageq — azes

(62 - 63)(61 - 62)

[S(e1 + €2) + Terea + Cles — as + ages — azel
(€3 —€1)(€2 — €3)

1
y = ag + ark + agk? +Z{ap+3kp +bpkp} (27)

p=1

To perform a least squares fit on this form, we need to find the minimum of

ij — Uj)=

>:
>x

n

1 Yy
ij (yﬂ' —ag — ark; — azk — Z [ap+3y + bpﬁ
7 j j

p=1

(yj —ap — ark; — axk? — Z [aergﬁ + bpﬁ
J J

p=1

" 1
ij (yj —ap — ark; — a2k2 [ap+3 1P + bp kp
J p=1

Ap+37p k:p + bi” k’p

(y—j—a—o— — @k} — Z[

‘)

Here ay, ..., a,+3, and y; are the complex quantities, the remainder all being real variables
and constants. b;...b, must be maintained as real because all the b, are additive and
multiplicative combinations of the €,. Due to the mixture of real and imaginary

coefficients, it is expedient to expand all the coefficients as the sums of real and imaginary
parts.
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n
; ; 2 ; 2 1 ; 1 Yj
ij (yj —arp —tajy) — CLlej — Zajlkj — angj —1 ajgkj - Zl [CLRP+3]{—§J + ’LCL[ergk—;J + bpk_f':|)
J p=

n —
= : ; 2 : 2 1 : 1 Yj
X (yj —aro +1ay — alej + Zankj - CLRQkIj + lajgkj — Z [aRp+3k—f — za[p+3k—f + bpk—§>:|)
p=1

We must successively take the derivative of this sum with respect to

RO, A0y -5 GRn+3, G1nts and by...b,, set each expression to zero, and solve to find the
minimum. Using the notation yp; = Real(y;) and y;; = Imaginary(y;), first work the
complex a,'s for ¢ = 0...2 which are the terms outside the inner sum.

g S wj(-) () = 0 =
J
ij( - yjk? T aROk? + ialok? + amk?“ + iallquﬂ + aRQk;Hz +1 aIQk?H
J
n
+ 21 [anrpesk!™ +iar k! + bpyjk?*p])
p:
i wj( Gk + arok] — tanky + aleJq'H - ia“kgﬂ + aR2k?+2 — 1 ankigﬁ
n
p:

ij( — (yj + y_j)k;] + 2CLRO]€? + 2a31k]q+1 + 2&32]€Jq+2
J

n

+ > Rampesk! 7+ by(y; + HET]) =0

p=1

ij( — ijkg + GR()]C? + aleJ?H + aRQk;”Q
J

n

+ Z [aRer?,k?_p + bpijk‘?_p]) =0 (28)

p=1

. . . 1 . 2 2
> w;j (z yik§ — i arok] + amk? —1 amlc;fﬂr + anquH —q amk;ﬁ + algk;ﬁ
J ‘ ‘ ' .

n
: q-p p 4 ; q—p
-> [z arpsk; © —apsk; T+ bpyjkj ])
p=1
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(= i GK] + i anok! + arok! + i am kT + ankl™ + i anakl™ + apk!
n
+ > [i aRHgk:j’p + a[p+3k]q’p +1 bpy—jkgfp]) =
p=1

Zu&( — y)k] + 2an0k] + 2ank; ol 2a12k;’.+2

n

+ Z[a]p+3k?_[) — ibp< y])kq p]) =

p=1
A — ikl X L 4t T2
wil — Yrk; + apk; + ank;t + ank;
J

n

+ Z [ a1p+3k:.?7p + bpyjjk?*p}) =0 (29)

p=1

Next, work the complex a,'s for ¢ = 3...2 + n, which are the a coefficient terms inside
the inner sum.

8%2w<x> 0=

Zw]( “+q Ok; 74 ialok?q + ale;’*q + iank?*q + ang;-lfq + Z'ajgk;-liq

+ 231 [GR]H—SkJ‘ —r + iaIp-i-Sk]Q‘iqip + bpyjk?iq*p]) + wj( — y_]kffq + aROkJQ‘iq -
p:

2— — . — 4—
arok; q+a31k3q—za11k3q+a ok ¢ _

a]2k4 1—|- Z [aRp+3k2 P za1p+3k —l—bpyij - p]) =
p=1

Zw3< y] =+ y;)k + 2QROk 4 QCLR1]€?7q + 2aR2k;‘Liq

+ Z [2a31)+3k,72‘7qw + bp(yJ + y])k2 - pD =

p=1
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Zwﬂ( yRJ T+ CLROk‘ T+ amk?q + GR2/€?7q

n

3" [anpskd 7+ byl 7)) =0 (30)

p=1

ij( + iyjka*q — Z'CLngf-iq + amk?*q - iale;ﬁq + ank‘?*q - iamk;-l*q + CL[Qk’?iq
: T 2—q D 2— 2—q .
—Z[zaRp+3kj - —a[p+3k TP by kT pD —}—wj( igk; "+

p=1

aROk?q + amk:?fq + Z.alek‘jiq + allkjiq +1
n
CI,RQkﬁiq —+ amk;liq + Z [Z aRergk]Q-*q*p + CLI[)+3]€J2- + { bpyjk2 ” p:|) =
p=1

ij( + Z yj)k' + 2a10k 74 2&[1]{3?_(] + 2&]2]6‘;4-_(]

= { — 2arpsk; TP +iby(y; — y_j)k?q*p]) =
p=1

ij( y]j 4 ZCL[()]C 74+ 2&]1]{?_(1 + 2a12k?_q

n

+y [2a1p+3k:§ P bkt PD —0 31)
p=1
Finally we need to work the real b,'s for ¢ = 1...n.
a%qzj:wj(...)(...) =0=
Z“’?( ~ Tish; ! + anallk; ! + i andik; !+ amFky !+ iandih; !+ analky 4
CLIQyJ T+ Z [aRp+33/yk’ Pt iansyk; T+ bpy_jyjk;qu]) +
wj( — yjyjk- + aroysk; ! — z'amyjk:j_q +agyk; = ianyk; "+ agoyki ©— i

CLIQyj 7+ Z [aRp+3y]k = Za1p+3yjk P +bpyjy]k ” p]) =0
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ij( — |yil*k; " + aroyrik;* + aroyrk;* + ariyrik; * + anyik; " + apayrsk;
J

n
+anyrk; T+ Y [arpisyrk; T 4 arpysyrk; T+ bp!yj|2kj_q_p]) =0 (32)
p=1

In matrix form, these equations can be expressed as:
Ma=0

where « is the vector of coefficients and (3 is the vector of dependent variables, where
each element represents a sum over j.

_ _ WiYRj
@R w;iyr;
10 w;Yr;k;
4R wjyrik;
an w;yRik;
ar J Jkil
aRs 3 WiYR;";

o= = —1
ars wjyfjkj
A Rn+2 wijjkj_"
Arn42 wjyfjkj’”
b1 27.-1
b, :
L . 27 n
_wj|yj | k; ]

In the matrix M below, each element represents a represents a sum over j and also
carries an implicit w;, the weighting factor that is common to all elements. For example,

in the representation below M; ; = ) w; and the last element of the first row
J

M172n+3 = ZwljReal(yj)kf".
J
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1 0 k 0 k? 0 k1 0 k" 0 yrk™' ... ygrk™"

0 1 0 k 0 k? 0 U 0 ko yrk™' . ykT

k 0 k? 0 K 0 1 0 I 0 YR . yrk™T

0 k 0 k2 0 k3 0 1 . 0 ki yr e yrktm
k? 0 K 0 Kt 0 k 0 T 0 yrk . ygpk*Tm

0 k? 0 K3 0 Kk 0 k . 0 k2 yrk e yrk?Tm
k1 0 1 0 k 0 k2 0 U 0 yrk™2 ... ypk7l™
0 k! 0 1 0 k 0 k2 0 ki yk™2 . ykTim
B0 ke 0 gm0 jien A 0 gk . gk

0 k™ 0 Etn 0 k> 0 kTt 0 0 yrk™ L gkt
.1/1?7.(l yﬂ'fl Yr yr Yyrk yrk y}?{f2 .1/1"672 ykaHl ylk.*l*" \y\%kd |l/|2kflfn

_yRk—n yrk™" kal—n ylkl—n yRkQ—n y[k.Z—n ka—l—n ylk—l—n yﬂk—Qn y[k—Zn ‘y‘Qk—l—n |y|2k—2n |

As before, the coefficients o can be obtained by solving M« = (3, which can be done by
inverting the matrix & = M '3 or by other means. The frequencies and amplitudes are then
obtained from the linear coefficients as shown above.

Preliminary results

This method was programmed and has given highly accurate results using test cases - in line
with those for single frequencies tabulated in Supplement 1. In fact, it was possible to separate
sets of two and three precise frequency signals which were all between two successive
frequencies of the FFT being used. Although the treatment of three adjacent frequencies is a
convenient and practical place to stop, there is no reason why even more adjacent signals could
not be treated.

At this point it does appear important to determine how many signals are present in an interval
and to perform the corresponding analysis in order to obtain maximum precision. This may be
done before the fact, by examining the patters present in the Fourier coefficients, or after the
fact, by examining the results of the fits after they are performed. The next step in development
will be defining an efficient procedure to determine this.





