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Note

This document predates Precise Signal Component and was not given a CFS number at the time.
In reviewing material related to Precise Signal Component | find that it gives a very good
development of the method of complex least squares, which is used in Precise Signal Component
and rarely (if ever) found in the general literature. It also gets usefully into some areas of
orthogonal and nearly orthogonal functions as | was thinking of them at that time. This line of
thought led directly to Precise Signal Component. There is a brief excursion into functions of the
form exp(-i f, ﬁk t) which | was exploring at the time and which is not relevant to Precise Signal
Component, but | have decided to leave the document as it was and assign it a current CFS
number.

This document is viewable only. | believe this will be adequate for people who do not intend to
study it. Please contact me through our web site if you need a printable version. | am aware that
the no-print can be defeated, but again | ask that you contact me instead. | really need to know if
and how people are finding these documents useful, and this seems one of the few ways | have
to encourage feedback.
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Integral Least Squares and Orthogonal Functions

We wish to approximate the complex function y(¢) overty, < t < t using a linear sum of
n

other complex functions, ;(¢), j = 1...n, so thaty = ) a;x;. To accomplish this, we
J=0

tf n n
/ w (y — Z@:@) (y — Zajxj) dt
to =0 =0

be a minimum, where w is a weighting factor, applied so that the relative importance of
deviations at different ¢ can be taken into account. The overline indicates the complex
conjugate. With complex variables, the "least squares" concept must become "least
magnitude," and the magnitude of x is zx. This becomes

/ T (:y - iajx.i) (? - IZ)CT; 93_;) di (1)
to =0 =0

Although it is not necessary to do so, it may be a little less confusing at this point to write
out the coefficient a; = ar; + iar;, where i = v/ — 1 and arj, a1; are the components of
aj.

require that

tf n n n n
/ w (y — Zaijj — iZag@) (@ — ZaRj T+ iZan :c_]> dt
to =0 =0 =0 =0

The object is to minimize this integral magnitude with respect to the choice of the

(Eqn 1) _ O(Eqn 1) — 0 and

.. - s . 9
constant multipliers a; = ar; + taz;. To do this we set Bam B

evaluate for a;..

O(Eqn 1) /tf & ~ _
——L = wl —|y— ) arjx;—1iy anz; |T;
Dan . j:ZO i) j:ZO i%;

n n
_ (y S a1 —) xk}dt o
=0 =0

now, expand the expression:
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tf n n
/ we — YTy + E AR;T;jT) + 1 E al1;T;Ty
to —

j=0 j=0

n n
— Yz + ZCLRj T;T) — iZan a:_jxk}dt =0

j=0 i=0

tf n
/ we — (YTk +Tax) + > _ar;(;T + Tz
to

J=0

+ iZan(a:jx_k — :v_ja:k)}dt =0
Jj=0

Several identities are useful at this point: @b + ab = 2Re( ab) = 2Re(ab); ~
ab — ab = 2iIm(ab) = — 2iIm(ab); ab —ab = — 2iIm(ab) = 2iIm(ab). Thus:

tf n
/ w{ — 2Re(yTy) + 2ZaRjRe(:cjx_k)
to

J=0

- QiQZanlm(xj:L‘_k) }dt =0

i=0

/ttfw< — 2Re(yTy) + 2iaRjRe(a:jx_k) — Zialﬂm(xjx_k)> dt =0 (2)

J=0 Jj=0

Note that all the terms in this equation are real (not complex). Now the same process is
applied, setting the ar, derivative equal to zero:

8(Eqn 1) /tf . n & -
2 w +ily— aRrR;x; — 1y aLx; |Ty
dan . j:ZO Jtj j:ZO Jtj

n n
L (g S > x—j)xk}dt o
=0 =0
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tf n n
/ wis + YT — E AR;T T}, — 1 E al;T;Ty,
to

7=0 7=0

n n
—yxi + ZaRj Ty — iZalj :L’_ja:k}dt =0

J=0 J=0

ty n
/ wis + (yTk — Jok) — Y _ar;(z,TF — Ty
to 7=0

- iZan(xjx_k + x_jxk)}dt =0

J=0

ty n
/ wid + 2iIm(yTy) — 20y _ar;Im(x;Tr)
to

J=0

- QiZaljRe(a:jx_k)}dt =0
=0

J

ty n n
/ w( —2Im(yzy) + QZCLRjIm(IL'jI'_k) + QZanRe(xjx_k)) dt =0 )
tU j—

j=0 7=0

Again, this equation is all in real terms (not complex). Thus Equations 2 and 3 may be
combined into one complex equation by multiplying Equation 3 by ¢ and adding the two
together. Note that a,z,;7) = (ar; + a1ji)(Re(z;zx) + Im(x;Ty)i), which is exactly the
form of the four terms in equations 2 and 3. Thus we have:

ty n
2/ w(—yx_k-l—Zajxjx_k)dt =0
to

J=0

or
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n ty Ly
Z/ wajxjx_kdt:/ wyxrdt  j=0,...,n 4
=0 to to
n tr Ly
Zaj/ wa:jx_kdt:/ wyxrdt  j=0,...n ()
=0 to to

There are n + 1 equations of this form. They can be expressed in matrix form as:

Xa =gq

Where X, = ftif w,;Tpdt, ap = ag, g = ftif wyTrdt. The ai's can be determined by
inverting the X matrix:

a=Xlq

The derivation of this general form for linear least squares is very similar to the
derivation of the coefficients for a series developed from orthogonal functions, such as
the Fourier series. The primary difference is that for a series of orthogonal functions, X
is always a diagonal matrix (for orthonormal functions it is the identity matrix). The off-
diagonal terms of X are interdependencies of the x functions. Since by definition the
members of a set of orthogonal functions are linearly independent, there are no
interdependencies and all off-diagonal terms are zero. Thus for orthogonal functions
each a is given directly by the corresponding q integral and any a (i. e. frequency
component) can be calculated without having to calculate the others. This feature; the
fact that no X matrix need be calculated or inverted and further, that any one a can be
calculated independently, have given orthogonal functions a central role in practical
applications, particularly the Fourier series in frequency spectrum analysis.

For the orthogonal functions, the g vector easily can be seen to be a set of resonators.
Each sum effectively beats the object function y(¢) against one of the x(¢)'s to
determine how well they resonate with one another. With the Fourier series, the
collection of various resonances become the frequency spectrum of the object signal and
it is easy to see that the amplitude of the spectral response at each frequency is precisely
the response of the resonator for that frequency.

Note that the g vector for the general form of linear least squares is precisely the same as
for a set of orthogonal functions. Again each sum effectively beats the object function
y(t) against one of the x(t)'s to determine how well they resonate with one another.
Again each ¢ is a resonator for the function for which the corresponding ay is the
amplitude of that "spectral component." The difference is that for general least squares
X is not the identity matrix and thus each amplitude a; will not equate exactly with the
corresponding resonator g, but will have various corrections based upon the responses of
other resonators. However, the device still produces a spectrum, and the matrix
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X !adjusts the raw resonator data to produce spectral components which also reflect the
interactions.

In the case of interest, we will be using functions e~/ 00" which are very similar to the
Fourier components e~“/!. The difference is that products of pairs of the Fourier
functions integrate conveniently to zero over the convenient interval [ — 7, 7] while the
B* form does not have this property. However, the 8* form does generally integrate to
produce small off-diagonal elements and furthermore, the disparity between the sizes of
the diagonal and off-diagonal elements tends to grow larger as the sample time increases
so that the X matrix tends to approach the identity matrix . Unlike the orthogonal form,
the coefficients associated with each frequency can be estimated even for short sample
times, with the accuracy and/or confidence increasing as the sample time increases. A
mechanism similar to this may explain how human hearing apparently can distinguish
frequencies with shorter sample times than Fourier analysis requires. The concept that
Fourier series analysis can exactly determine the component of frequency f in an
arbitrary signal is not true in general, and will work only if the spectrum is defined to
consist of just frequencies related as 1, 2, ..., n.

It is also apparent that the "magic" of Fourier series analysis is a direct result of the
choice of a set of spectral frequencies which produce an orthogonal set of functions.
That set of functions produces a spectrum which is additively spaced in frequency:

fj = j. Human hearing responds to frequency differences which are multiplicatively
spaced in frequency: f. = fo 3. Thus Fourier series analysis, no matter how attractive
its properties, simply does not produce the correct response. It is clear that this is indeed
the case when one realizes that many of the functions e~if05" can be made to equal a
function e~ with the same frequency and identical sample time. Thus the integral for
that resonator will be identical for the Fourier analysis and the present analysis. Fourier
analysis will give a precise amplitude of response for those frequency components, but
that same amplitude will have to be adjusted to be correct for the multiplicative spectrum.

Consider the least squares relationship that was developed earlier:
a=Xqg

The expression for aj, can be written out as a sum:

n
4
ap = E Tk,jq5
Jj=1

where Ek_j indicates the k, /" element of the inverse matrix, X . Substituting for g;

ap = E Ez'kj/ wyT;dt
j=1 to
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This can be rearranged:

tf n
ak:/ wyg T Tidt
to

J=1

n
At this point define s, = Y @) ; T;. Then
=1

ty
ar :/ wysdt

to

Note that this summation has exactly the same form as ¢q;, = f;f wyzdt, but with s; in
place of zy. In the case of orthogonal functions, ar = q; = ftzf wyxrdt. For general
linear least squares, the resonator based on the function () is still ¢ = f;f wyzdt, but
the amplitude response for z(t) is ar, = ftzf wysidt, which has the form of a resonator

for a different function sy (). Thus we can call s;(t) the surrogate for z;(¢). Once a
sampling interval ¢, < ¢ < ¢ is chosen, the set of surrogate functions s;,(¢) can be
computed directly from the set of functions x(¢), independent of y(¢), and the individual
spectral components, a; can be independently computed from a single weighted sum of
the data, just as is the case for orthogonal functions.

As well as the similarities, there are some important differences between general linear
least squares and orthogonal function series. One of the reasons for the widespread use
of Fourier series analysis is the availability of the Fast Fourier Transform (FFT), by
which mechanism an entire spectrum of Fourier coefficients can be calculated in a
number of operations proportional to n In n rather than proportional to n? as direct
evaluation of the spectral sums would require. Such a mechanism is not available for
general linear least squares. A second very important difference is that orthogonal
function series and the Fourier series and the FFT in particular, are almost always
computed from a number of sample points exactly matching the number of aj,
coefficients. The only requirement for general linear least squares is that the number of
sample points be greater than or equal to the number of coefficients or, since there are

n + 1 coefficients, m > n. Since the use of surrogate functions allows each spectral
amplitude to be expressed as an independent sum, in practical analysis of signals there is
no reason that m, need be the same for all of the n functions. The same is true of the
sampling rate. In multiplicative frequency spectrum analysis it may prove very useful to
adjust both the effective sampling rate and the number of samples when treating a broad
range of frequencies.





