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Note
This document predates Precise Signal Component and was not given a CFS number at the time.
In reviewing material related to Precise Signal Component I find that it gives a very good
development of the method of complex least squares, which is used in Precise Signal Component
and rarely (if ever) found in the general literature.  It also gets usefully into some areas of
orthogonal and nearly orthogonal functions as I was thinking of them at that time.  This line of
thought led directly to Precise Signal Component.  There is a brief excursion into functions of the
form exp(-i f0 β k t) which I was exploring at the time and which is not relevant to Precise Signal
Component, but I have decided to leave the document as it was and assign it a current CFS
number.

This document is viewable only.  I believe this will be adequate for people who do not intend to
study it.  Please contact me through our web site if you need a printable version.  I am aware that
the no-print can be defeated, but again I ask that you contact me instead.  I really need to know if
and how people are finding these documents useful, and this seems one of the few ways I have
to encourage feedback.
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Integral Least Squares and Orthogonal Functions

We wish to approximate the complex function  over using a linear sum ofCÐ>Ñ > Ÿ > Ÿ >! 0

other complex functions, so that To accomplish this, weB Ð>Ñß 4 œ "ÞÞÞ8ß C œ + B Þ4 4 4
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be a minimum, where  is a weighting factor, applied so that the relative importance ofA
deviations at different  can be taken into account.  The overline indicates the complex>
conjugate.  With complex variables, the "least squares" concept must become "least
magnitude," and the magnitude of  is .   This becomesB BB
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Although it is not necessary to do so, it may be a little less confusing at this point to write
out the coefficient where  and  are the components of+ œ +  3+ ß 3 œ  " + ß +4 4 4 4 4V M V MÈ
+4:
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The object is to minimize this integral magnitude with respect to the choice of the
constant multipliers . To do this we set  and+ œ +  3+ œ œ !4 4 4
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now, expand the expression:
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Several identities are useful at this point:  +,  +, œ #V/Ð +,Ñ œ #V/Ð+,Ñà
+,  +, œ #3M7Ð +,Ñ œ  #3M7Ð+,Ñà +,  +, œ  #3M7Ð +,Ñ œ #3M7Ð+,Ñ  .  Thus:
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Note that all the terms in this equation are real (not complex).  Now the same process is
applied, setting the  derivative equal to zero:+Mk
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Again, this equation is all in real terms (not complex).  Thus Equations 2 and 3 may be
combined into one complex equation by multiplying Equation 3 by  and adding the two3
together.  Note that , which is exactly the+ B B œ Ð+  + 3ÑÐV/ B B  M7 B B 3Ñ4 4 5 4 4 4 5 4 5V M a b a b
form of the four terms in equations 2 and 3.  Thus we have:
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There are  equations of this form.  They can be expressed in matrix form as:8  "
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Where ,  The 's can be determined by\ œ AB B .> + œ + ß ; œ ACB .>Þ +4ß5 4 5 5 5 5 5 5> >
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inverting the  matrix:—
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The derivation of this general form for linear least squares is very similar to the
derivation of the coefficients for a series developed from orthogonal functions, such as
the Fourier series.  The primary difference is that for a series of orthogonal functions, —
is always a diagonal matrix (for orthonormal functions it is the identity matrix).  The off-
diagonal terms of  are interdependencies of the  functions.  Since by definition the— B
members of a set of orthogonal functions are linearly independent, there are no
interdependencies and all off-diagonal terms are zero.  Thus for orthogonal functions
each  is given directly by the corresponding  integral and any  (i. e. frequency+ ; +
component) can be calculated without having to calculate the others.  This feature; the
fact that no  matrix need be calculated or inverted and further, that any one  can be— +
calculated independently, have given orthogonal functions a central role in practical
applications, particularly the Fourier series in frequency spectrum analysis.

For the orthogonal functions, the  vector easily can be seen to be a set of resonators.;
Each sum effectively beats the object function  against one of the 's toCÐ>Ñ B Ð>Ñ5

determine how well they resonate with one another.  With the Fourier series, the
collection of various resonances become the frequency spectrum of the object signal and
it is easy to see that the amplitude of the spectral response at each frequency is precisely
the response of the resonator for that frequency.

Note that the vector for the general form of linear least squares is precisely the same as;
for a set of orthogonal functions.  Again each sum effectively beats the object function
CÐ>Ñ Ð>Ñ against one of the x 's to determine how well they resonate with one another.5

Again each  is a resonator for the function for which the corresponding is the; +5 5

amplitude of that "spectral component."  The difference is that for general least squares
— is not the identity matrix and thus each amplitude  will not equate exactly with the+5
corresponding resonator , but will have various corrections based upon the responses of;5
other resonators.  However, the device still produces a spectrum, and the matrix
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—"adjusts the raw resonator data to produce spectral components which also reflect the
interactions.

In the case of interest, we will be using functions  which are very similar to the/30 >!
5"

Fourier components   The difference is that products of pairs of the Fourier/ Þ34>

functions integrate conveniently to zero over the convenient interval  while theÒ  ß Ó1 1
" "5 5 form does not have this property.  However, the  form does generally integrate to
produce small off-diagonal elements and furthermore, the disparity between the sizes of
the diagonal and off-diagonal elements tends to grow larger as the sample time increases
so that the  matrix tends to approach the identity matrix .  Unlike the orthogonal form,—
the coefficients associated with each frequency can be estimated even for short sample
times, with the accuracy and/or confidence increasing as the sample time increases.  A
mechanism similar to this may explain how human hearing apparently can distinguish
frequencies with shorter sample times than Fourier analysis requires.  The concept that
Fourier series analysis can exactly determine the component of frequency  in an0
arbitrary signal is not true in general, and will work only if the spectrum is defined to
consist of just frequencies related as ."ß #ß ÞÞÞß 8

It is also apparent that the "magic" of Fourier series analysis is a direct result of the
choice of a set of spectral frequencies which produce an orthogonal set of  functions.
That set of functions produces a spectrum which is additively spaced in frequency:
0 œ 4Þ4  Human hearing responds to frequency differences which are multiplicatively
spaced in frequency:  Thus Fourier series analysis, no matter how attractive0 œ 0 Þ5 !

5"
its properties, simply does not produce the correct response.  It is clear that this is indeed
the case when one realizes that many of the functions  can be made to equal a/30 >!

5"

function  with the same frequency and identical sample time   Thus the integral for/ Þ3 >j

that resonator will be identical for the Fourier analysis and the present analysis.  Fourier
analysis will give a precise amplitude of response for those frequency components, but
that same amplitude will have to be adjusted to be correct for the multiplicative spectrum.

Consider the least squares relationship that was developed earlier:
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The expression for  can be written out as a sum:+5
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This can be rearranged:
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Note that this summation has exactly the same form as but with s  in; œ ACB .>ß5 5>
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place of .  In the case of orthogonal functions, For generalB + œ ; œ ACB .>Þk k5 5 >
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linear least squares, the resonator based on the function  is still , butB Ð>Ñ ; œ ACB .>5 5 >
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k

the amplitude response for  is s , which has the form of a resonatorB Ð>Ñ + œ AC .>5 5 5>
>'
!
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for a different function .  Thus we can call  the surrogate for .  Once a= Ð>Ñ = Ð>Ñ B Ð>Ñ5 5 5

sampling interval  is chosen, the set of surrogate functions  can be> Ÿ > Ÿ > = Ð>Ñ! 0 5

computed directly from the set of functions , independent of , and the individualB Ð>Ñ CÐ>Ñ5

spectral components,  can be independently computed from a single weighted sum of+5
the data, just as is the case for orthogonal functions.

As well as the similarities, there are some important differences between general linear
least squares and orthogonal function series.  One of the reasons for the widespread use
of Fourier series analysis is the availability of the Fast Fourier Transform (FFT), by
which mechanism an entire spectrum of Fourier coefficients can be calculated in a
number of operations proportional to  rather than proportional to  as direct8 688 8#

evaluation of the spectral sums would require.  Such a mechanism is not available for
general linear least squares.  A second very important difference is that orthogonal
function series and the Fourier series and the FFT in particular, are almost always
computed from a number of sample points exactly matching the number of +5
coefficients.  The only requirement for general linear least squares is that the number of
sample points be greater than or equal to the number of coefficients or, since there are
8  " 7  8 coefficients,  .  Since the use of surrogate functions allows each spectral
amplitude to be expressed as an independent sum, in practical analysis of signals there is
no reason that , need be the same for all of the  functions.  The same is true of the7 8
sampling rate.  In multiplicative frequency spectrum analysis it may prove very useful to
adjust both the effective sampling rate and the number of samples when treating a broad
range of frequencies.




